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Abstract: A simple and novel method to analyse the centration of a lenticule of tissue extracted
from a cornea has been developed, in which the centre of “mass” of the individual differences
between post and preoperative maps of several corneal metrics represents the lenticule centration
and its spatial distance to a reference point (aimed centration) determines the decentration.
Different parameters have been evaluated to weight the centre of “mass”. The robustness of the
methods has been evaluated using perturbation analysis (adding white-noise to the data) based on
realistic uncertainties. A clipped analysis has been performed to prevent large, localised areas of
lacking/missing data from affecting the centre of “mass”. The method has been tested on a pilot
cohort of clinical data showing 30% and 63% of the treatments within 200 µm of decentration
for corneal thickness and refractive equivalent power, respectively. Except for anterior elevation
with a total standard deviation of 17 µm, all other metrics show excellent precision of ∼5 µm.
The method provides a reliable and objective way to determine the centration of a lenticule of
tissue extracted from a cornea and it can be applied to any topo- or tomographic derived metric.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Corneal refractive surgery is a type of eye surgery that is used to correct vision problems by
removing tissue from the cornea [1]. The cornea is the clear, dome-shaped surface of the eye that
helps to focus light as it enters the eye. By removing tissue from the cornea, the shape of the
cornea can be changed to improve vision.

One way to think about this tissue removal is by creating a lenticule with optical properties
[2,3]. A lenticule is a small, lens-shaped piece of tissue that has been carefully cut out of the
cornea to correct for refractive errors. For this treatment approach to be effective, it is important
to centre the optical correction at a selected reference point, such as the corneal intersection of
the visual axis. This ensures that the correction is applied in the correct location to improve
vision [4].

However, if the actual correction is decentered with respect to this reference point, it can have a
negative impact on visual performance. This can lead to problems such as coma (distorted vision),
reduced contrast sensitivity, or reduced visual acuity [5]. Previous research has determined the
permissible levels of decentration based on different optical measures [6]. Previous methods
reported to determine lenticule centration often require operator input or involve subjective
judgement [7]. This involves overlaying (manually/subjectively calibrated) circles and rulers over
the image of a difference map to find the “best correspondence” between markers (circles and
rulers) and the pseudo-colours in the difference map to determine (de-)centration (subjective
judgement). This results in a fully manual, subjective, and time-consuming process.

The aim of this work is to develop and assess a new and simple method for analyzing the
centration of a lenticule of tissue extracted from a cornea. This method would be operator
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independent and unbiased and could be used to accurately assess the centration of the lenticule.
In addition, this method may provide an alternative objective way to compare the accuracy and
reproducibility to center a treatment on a specific target point at the cornea.

2. Methods

2.1. Difference between preoperative and postoperative measurements

The method to evaluate the centration of treatment is based on two topographic/tomographic
measurements of the cornea (preoperative and postoperative). For each measurement, multiple
metrics can be considered. Since the main mechanism of the corneal refractive surgery is to
modify the curvature of the anterior surface of the cornea to modulate its optical power (in order
to improve vision and visual quality without the use of any refractive aid (e.g. spectacles, contact
lenses)), the metrics of interest for this work include corneal thickness (CT), anterior elevation
(EA), corneal refractive equivalent power (REP), anterior refractive power (RFAP), and anterior
sagittal (SA) and tangential curvatures (TAA) [8,9,10]. These metrics are typically available in
the form of data matrices.

The method computes the difference between the postoperative and preoperative matrices for
the selected metric (Fig. 1) and determines the centre of “mass” of the difference matrix. Of
course, this is actually not the centre of mass in a rigorous manner. But the concept of centre of
mass can be applied per analogy to corneal data. In a broader sense, the calculated centre is a
“weighted average”, but the centre of mass analogy provides a more intuitive interpretation.

Fig. 1. Example of difference matrix (for the metric corneal thickness for case 5. of
treatment OS) used to determine the centre of “mass”
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2.2. Centre of “mass”

The centre of mass refers to the point at which an object is perfectly balanced and would remain
stable if it were supported at that point. The centre of mass is important because it determines
how an object will behave when it is rotated or translated into space. For example, if the centre
of mass of an object is not aligned with the point at which it is supported, the object may tip over
or become unstable.

The centre of mass can be simply calculated for a collection of discrete points as:

X =
∑︁
(xi*wi)∑︁

wi
(1)

Y =
∑︁
(yi∗wi)∑︁

wi
(2)

where X/Y are the coordinates of the centre of mass, xi/yi are the local coordinates within the data
matrix, and wi the weighting parameters (in the centre of mass analogy, the weightings would be
the local mass of each individual data point).

2.3. Weighting parameters

In our method, the weighting parameters have been selected based on the initial inspection of the
type of data (corresponding metric, i.e., measured signals). The measured signals are the values
of the respective metric, i.e., using e.g., EA the elements in the matrices represent elevation data.
We use these (elevation) data to determine the weights for the weighted average (analogy to
centre of mass). For other metrics, we use the corresponding values in the matrices (what we call
“the signals”) to determine the weights for the weighted average.

Most of the metrics include positive and negative signals within the difference matrix (since
we use the difference of the respective metric between pre- and post-surgery measurements, some
matrix elements (of the difference matrices) may have positive values while other elements in the
same matrix may have negative values). To account for the cancellation effects (the denominator
of the weighted average (the sum of all weighting values for all matrix elements) becoming very
small (or theoretically even zero)) and to prevent the denominator in the calculation of the centre
of “mass” from approaching zero (leading to division by zero problem), each dataset has been
shifted (either to be defined positively by subtracting the min value of the matrix from each of the
values of the data points or to be defined negatively by subtracting the max value of the matrix
from each of the values of the data points).

To provide flexibility, we have incorporated 2 parameters into the method. A global factor
which scales the min/max value shift (i.e., a factor of zero would neglect the shift, a factor of
unity would ensure a zero to peak signal distribution, and a factor of infinity (very large factors)
would asymptotically approach a centroid calculation). The second parameter is an exponent
(power) for the weightings (i.e., power of zero would correspond to a centroid calculation, power
of unity would provide linear weightings, and power of 2 would base on quadratic weightings
(thus also avoiding the cancellation effects of positive and negative signals within the difference
matrix)).

The factor and power parameters are used to determine the weights for each value in the set
of values. The factor parameter determines the relative weight of the min/max value in the set,
while the power parameter determines the exponent to which the shifted value is raised. This
corresponds to the following equations for the centre of “mass”:

wi = (Elementi − factor∗Matrixmin/max)
power (3)

where Elementi is the value of each element in the matrix (scanned through the index i), whereas
Matrixmin/max represents either the minimum or maximum value of the whole matrix.

The values for factor and power used in this work are presented in Table 1.
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Table 1. Weighting parameters for centre of “mass”

factor/power 0 1 2

0 0,0 0,1 0,2

1 1,0 1,1 1,2

2 2,0 2,1 2,2

2.4. Perturbation

To determine the robustness of the method and to account for the unavoidable uncertainties
included in any single physical measurement, a perturbation analysis has been performed. [11,12]

Each matrix is modified (perturbed) with white-noise (perturbation) based on realistic
uncertainties [13]. The appropriate values for the white-noise have been taken from previous
reports [13], see Table 2.

Table 2. Noise based on realistic uncertainties taken from
previous reports

Metrics Noise

Corneal thickness 14 µm

Elevation anterior 10 µm

Refractive equivalent power 0.75 D

Refractive frontal power anterior 0.35 D

Sagittal anterior 0.35 D

Tangential anterior 0.75 D

Assuming gaussian error propagation, the perturbation of both pre and postoperative datasets
independently can be simplified as a larger perturbation of the difference matrix.

Elementi = Elementi + (2∗Randomi − 1)∗Noise∗
√

2 (4)

where Elementi (the value of each element in the difference matrix (scanned through the index i))
is perturbed with random noise (Randomi for each element), Noise is the amplitude of the noise
(as presented in Table 2), and the factor

√
2 corresponds to the effect of gaussian error propagation

on two independent datasets (pre and postoperative). (2* Randomi – 1) provides random values
between -1 and +1, which are then scaled by the Noise amplitude times

√
2. Overall, in Eq. (4),

Elementi (the value of each element in the difference matrix (scanned through the index i)) is
perturbed with random noise values (for each element) between -

√
2*Noise and +

√
2*Noise.

For the perturbation analysis, a loop is built for each case, 1 time without perturbation (ground
truth) and n times with perturbation, which are then statistically analysed. The difference in the
perturbed average centre of “mass” with respect to the ground truth corresponds to the accuracy
of the method, whereas the standard deviation of the perturbed centre of “mass” represents the
precision (reproducibility, robustness) of the method.

Totalstandarddeviation =

√︄∑︁
(standard deviation)2

n cases (5)

Totalerror =
Totalstandarddeviation√︁

n loops
(6)
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2.5. Clipping

To prevent large, localized areas of lacking/missing data from affecting the centre of “mass”, a
clipping approach has been developed, in which the centre of “mass” is determined for subset
data within a predetermined distance from the natural centre of the measurement (unlike the
centre of “mass” based on all available points).

The center of the clipping diameter corresponds to the center of the tomographer data. Its
physical position represents the corneal vertex normal (i.e., the most prominent point of the
cornea, the point which is closer to the lens of the CCD camera of the videokeratoscope. At the
vertex normal the cornea is also perpendicular to the videokeratoscope axis. On the acquired
image, the vertex normal is the ideal center of the first (inner) mire).

The considered clipping radii are listed in Table 3

Table 3. Different radii for clipping

Radii ≤ 4.5 mm ≤ 4.0 mm ≤ 3.5 mm ≤ 3.0 mm ≤ 2.5 mm

For the clipped analysis, a loop is built for each case, 1 time for the whole dataset (potentially
including regions with missing values) and n times with different clipping radii, which are then
statistically analyzed. Both a difference in average clipped centre of “mass” respect to the whole
dataset or a large standard deviation of the clipped centre of “mass” suggest that the difference
matrix includes large, localized areas of lacking/missing data.

2.6. Clinical data for evaluation

The clinical data comes from treatments performed by a single surgeon (VD) in a single centre.
The corneal measurements were performed with a Placido-Scheimpflug tomographer (SIRIUS,
CSO, Italy) [14]. The treatments were performed using a lenticule extraction femtosecond laser
system (SmartSight using SCHWIND ATOS, SCHWIND eye-tech-solutions, Germany). The
dataset includes 101 eyes of 56 patients, 45 of them using bilateral data.

The used system provides the data matrices in polar/cylindrical coordinates based on constant
radial and angular steps.

Azimuthal angle = 2π ∗
(︃
column index

256

)︃
(7)

The equation obtains azimuthal angle from the column index. The column index goes from
0 to 255, with the azimuthal angle given in radians. The column indices were obtained from
the pixel azimuthal position in a polar array of data. A full circle represents 2π radians. The
first element (index zero) corresponds to 0 radians, the last element (index 255) corresponds
to 2π*255/256 radians, since 2π radians are wrapped again to 0. The meridional step between
columns corresponds to π/128 radians between equally azimuthally spaced meridians.

Radial distances = 6 ∗

(︃
row index

30

)︃
(8)

The equation obtains radial distances from the row index. The row index goes from 0 to 30,
with the radial distances given in mm. The row indices were obtained from the pixel radial
position in a polar array of data. The full circle represents 6 mm radius. The first element (index
zero) corresponds to 0 mm (origin of the data, which is redundant for all 256 azimuthal angles),
the last element (index 30) corresponds to 6 mm. The radial step between rows corresponds to
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0.2 mm between equally radially spaced circles.

[x1,...,i,...,31∗256] = Radialdistances ∗ cos(Azimuthalangles) (9)

[y1,...,i,...,31∗256] = Radialdistances ∗ sin(Azimuthalangles) (10)
where all (31*256) combinations of radial distances and azimuthal angles are computed to
determine xi and yi, which are then used in Eqs. (1) and 2 (via Eq. (3)) to determine the X and Y
coordinate of the centre of “mass”.

R =
√︁

X2 + Y2 (11)

tan(φ) =
Y
X

(12)

where R is the radial distance (the chord length) and φ the azimuthal angle (meridional axis) of
the coordinate of the centre of “mass”.

We have used polar matrices provided by the measurement device (a collection of points in a
cylindrical coordinate system). The radial distances run from zero to 6 mm, thus the origin (centre
of the maps) corresponds to the zero radial position, i.e. to the zero/zero cartesian position. The
centre of the displayed maps is defined as the origin of the polar coordinate system corresponding
to the center of the tomographer data. The centre of “mass” for each treatment and each metric
has been determined (101 treatments * 6 metrics= 606 XY for the centre of “mass”).

The 9 combinations, see Table 1, were computed twice (using both Matrixmin and Matrixmax
to shift the weightings, leading to 18 combinations) for a specific Case to demonstrate how the
calculations are performed.

The whole dataset has been evaluated using these parameters factor= 1, power= 1, including
the following analyses:

• An XY plot for all metrics for both treatments (OD/OS) of a specific patient.

• XY plots for all treatments and two representative metrics (corneal thickness and refractive
equivalent power) split in OD/OS.

• A statistical summary for every metric across all treatments (averages, standard deviations,
minimum, and maximum, for each metric) and histograms for two representative metrics
(corneal thickness and refractive equivalent power) across all treatments split in X, Y, R.

• Correlations between preoperative pupil offset and each metric.

• The differences in pupil center and limbus center positions (from pre- to post-operative)
have been used as a sanity check.

• Correlations between the shift in limbus centre and each metric.
In the perturbation analysis, a loop of 6 iterations is performed for each case (treatment/eye),

with the first iteration serving as the ground truth and 5 iterations involving perturbation. For
these 5 perturbation iterations, the average and standard deviation of the centre of “mass” are
calculated for each case. The average is used for the accuracy calculation and standard deviation
for the robustness (reproducibility). The total standard deviation is calculated by taking the sum
of the squares of the standard deviation of each case divided by 101 cases. The total standard
error is calculated by dividing the total standard deviation by the square root of 5 iterations.

In the clipped analysis, a loop of 6 iterations is performed for each case (treatment/eye), with
the first iteration using the whole matrix (potentially including regions with missing values) and
5 iterations involving decreasing radii. For these 5 clipped iterations, the average and standard
deviation of the calculated centre of “mass” are determined for each case. Again, the total
standard deviation is calculated by taking the sum of the squares of the standard deviation of each
case divided by 101 cases. The total standard error is calculated by dividing the total standard
deviation by the square root of 5 iterations.
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2.7. Technical implementation

The method has been implemented using the R - free software environment for statistical computing
and graphics (https://www.r-project.org/). R is a language and environment for statistical
computing and graphics. It is a GNU project which is similar to the S language and environment
which was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John
Chambers and colleagues. R can be considered as a different implementation of S. There are
some important differences, but much code written for S runs unaltered under R. R provides a
wide variety of statistical and graphical techniques and is highly extensible. The S language is
often the vehicle of choice for research in statistical methodology, and R provides an Open-Source
route to participation in that activity.

3. Results

3.1. Parameters

The 9*2= 18 combinations, as Table 1 shows (using both Matrixmin and Matrixmax to shift the
weightings), have been calculated for a specific Case and the results are shown in Table 4.

Table 4. Different weight combination for Case 5 OS and metric corneal thickness
according to Eq. (3) using either Matrixmin or Matrixmax to shift the weightings

Min | Max Power

0 1 2
Factor Min Max Min Max Min Max
0 X: 0.051 mm

Y: -0.404 mm
R: 0.407 mm

X: 0.051 mm
Y: -0.404 mm
R: 0.407 mm

X: 0.361 mm
Y: -0.223 mm
R: 0.425 mm

X: 0.361 mm
Y: -0.223 mm
R: 0.425 mm

X: 0.099 mm
Y: -0.091 mm
R: 0.134 mm

X: 0.099 mm
Y: -0.091 mm
R: 0.134 mm

1 X: 0.051 mm
Y: -0404 mm
R: 0.407 mm

X: 0.051 mm
Y: -0.404 mm
R: 0.407 mm

X: -0.158 mm
Y: -0.526 mm
R: 0.549 mm

X: 0.168 mm
Y: -0.336 mm
R: 0.376 mm

X: -0.399 mm
Y: -0.488 mm
R: 0.631 mm

X: 0.190 mm
Y: -0.252 mm
R: 0.316 mm

2 X: 0.051 mm
Y: -0404 mm
R: 0.407 mm

X: 0.051 mm
Y: -0.404 mm
R: 0.407 mm

X: -0.027 mm
Y: -0.450 mm
R: 0.450 mm

X: 0.123 mm
Y: -0.362 mm
R: 0.383 mm

X: -0.127 mm
Y: -0.474 mm
R: 0.491 mm

X: 0.161 mm
Y: -0.311 mm
R: 0.350 mm

For the rest of the analysis, the whole dataset has been evaluated using factor= 1, power= 1,
and Matrixmin as parameters for Eq. (3).

The XY plot for Case 5 for all the metrics separated for OD and OS is presented in Fig. 2.
The XY plot for corneal thickness and corneal refractive equivalent power for all cases is shown
as Fig. 3. The summary for each metric across all treatments is presented in Table 5, and the
corresponding histograms (for corneal thickness and corneal refractive equivalent power) of all
treatments for X, Y, R in Fig. 4. Figure 5 displays the effects of clipping with different radii (as
described in Table 3) for case 5 OS.

There was no significant correlation between preoperative pupil offset and any of the metrics.
The results indicate that preoperative pupil offset does not affect the metrics, and that there is
no relevant change in pupil offset from pre- to postoperative measurements. Additionally, the
maximum deviation of differences in pupil centre and limbus centre positions was found to be

https://www.r-project.org/
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Fig. 2. Plot for all metrics (CT, EA, REP, RFPA, SA, TAA) of case 5. with treatment
OS/OD

Fig. 3. X, Y plots for all treatments for the metrics a) corneal thickness. b) corneal refractive
equivalent power

less than 200 µm. However, the centre of “mass” X coordinate correlated with the difference in
the X coordinate of the limbus centre (respect to the corneal vertex normal) for 2 of the metrics
(CT and TAA) (p< .0001 for both).

The accuracy of perturbation analysis is presented in Table 6. The total standard deviation and
total standard error of the perturbation analysis are shown as Table 7.
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Table 5. Statistical summary of all treatments for all metrics of all the patients

Mean StdDev Min Max

corneal thickness (µm)
X -5 207 -597 877

Y -27 232 -621 770

R 270 157 26 905

anterior elevation (µm)
X 6 100 -217 287

Y -87 910 -256 246

R 133 63 15 378

corneal refractive equivalent power (µm)
X 31 111 -280 294

Y -72 174 -647 428

R 174 135 11 647

anterior refractive power (µm)
X 7 216 -576 536

Y -188 255 -764 629

R 318 215 0 888

anterior sagittal (µm)
X 9 190 -408 426

Y -126 224 -727 607

R 274 165 11 765

tangential curvatures (µm)
X -21 125 -446 308

Y -63 218 -868 799

R 206 158 23 878

Table 6. Accuracy (Difference in the perturbed average centre of “mass”
with respect to the ground truth) of perturbation for all the treatments of all

metrics for all patients

Mean StdDev Min Max

corneal thickness (µm)
X 1 20 -39 58

Y -1 21 -59 56

R 24 16 0 67

anterior elevation (µm)
X -4 60 -118 124

Y 16 59 -168 111

R 80 32 20 209

corneal refractive equivalent power (µm)
X -1 9 -33 27

Y 3 15 -57 51

R 12 14 0 63

anterior refractive power (µm)
X 1 12 -33 24

Y 8 17 -34 78

R 16 15 0 81

anterior sagittal (µm)
X 0 13 -43 35

Y 5 13 -28 35

R 16 11 0 46

tangential curvatures (µm)
X 0 5 -12 17

Y 0 7 -28 15

R 5 5 0 28
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Fig. 4. distribution of X/Y for a) corneal thickness. b) corneal refractive equivalent power.
c) distribution of R for corneal thickness and corneal refractive equivalent power.

Fig. 5. Centre of “mass” for different clipping sizes (as described in Table 3) for case 5 OS.
The X axis is simply labelled but not scaled, with the diameters in decreasing order. Due
to missing values, clipping with different diameters shows a robust centre of “mass” for a)
corneal thickness and b) corneal refractive equivalent power.
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Table 7. Total standard deviation and total error of perturbation

Tot. StdDev Tot. Err

corneal thickness (µm)
X 6 2

Y 4 2

R 6 2

anterior elevation (µm)
X 16 7

Y 15 7

R 16 7

corneal refractive equivalent power (µm)
X 5 2

Y 6 2

R 7 3

anterior refractive power (µm)
X 5 2

Y 6 2

R 7 3

anterior sagittal (µm)
X 4 2

Y 4 2

R 5 2

tangential curvatures (µm)
X 2 1

Y 2 1

R 3 1

4. Discussion

A method for determining the centration [15,16,17] of a lenticule of tissue extracted from a
cornea has been successfully developed and evaluated. The method is simple and objective
and its accuracy and reliability has been determined in a small pilot cohort. The method is
universally applicable and can be used to analyse any metric that is susceptible to change from
pre- to postoperatively [8,15,18].

The centration of the lenticule can be determined with respect to various references, such as
the pupil centre, limbus centre, visual axis, or corneal vertex normal. The centre of the displayed
maps is defined as the origin of the polar coordinate system and corresponds to the position of
the corneal vertex normal.

The centre of mass is a point that is the average location of an object’s mass distribution. It
is the point where the object’s mass distribution is balanced, so if the object were supported at
this point, it would remain in equilibrium. The position of the centre of mass depends on the
distribution of mass within the object. Therefore, the parameter sets (0,1), (0,2), (1,1), (1,2),
(2,1), and (2,2) from Table 1 result in different centres of “mass” for the same difference matrix.

The centroid, on the other hand, is the geometric centre of an object (boundary contour). It is
the average of all points in the object. The centroid is the point where the object’s geometric axes
intersect, such as the centre of a circle. The centroid is not affected by the actual mass distribution
in the object and is only determined by the shape of the object. Therefore, the parameter sets
(0,0), (1,0), and (2,0) from Table 1 (i.e., power= 0) determine the centroid of the difference
matrices. For most cases, these two points (centroid and centre of “mass”) are close to each other
(as reported in Table 4), but conceptually they are not the same.

Both centroid and centre of “mass” calculations assume that the coordinates of the centre
remain within the cloud of data. However, if there are missing data points or incomplete regions
in the data, these methods can produce inaccurate or biased results. To address this issue, Hough
algorithms can also be used to detect and compensate for missing data points, allowing for more
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accurate calculation of centroids and centres of “mass”, even for complex shapes such as ellipses
or weighted factors.

Since we use the difference of the respective metric between pre- and post-surgery measure-
ments, the values may be positive or negative. Actually, some matrix elements (of the difference
matrices) may have positive values while other elements in the same matrix may have negative
values. This may make the denominator of the weighted average (the sum of all values for all
matrix elements) very small (or theoretically even zero). We implicitly adopt the intuitive notion,
that the centre (weighted average) of the lenticule/correction shall be restricted to the boundaries
of the measured region. This can be ensured by preventing the denominator from becoming
values close to zero (i.e., adding (or subtracting) a fixed term (factor*Matrixmin/max) to shift the
weight for each element).

As mentioned for the parameter sets (0,1), (0,2), (1,1), (1,2), (2,1), and (2,2) from Table 1 we
obtain the centre of “mass” of the difference matrices, but each set produces varying results. For
example, using a factor of 0 and a power of 1 result in weights that are equal to the element itself
(thus, they could even out), regardless of the minimum or maximum value in the set. On the
other hand, using a factor of 0 and a power of 2 results in weights that are equal to the square
of the element (thus, defined positive), regardless of the minimum or maximum value in the
set. Using a factor of 1 and a power of 1, on the other hand, results in weights that are equal to
the difference between the element and the extreme value in the matrix (which could be set to
min or to max value of the matrix) and result in a zero to peak distribution of weightings. And
accordingly for other values.

There is no intrinsic limitation for the factor and power to be integers between 0 and 2.
They could have been any real values. We merely took the integers between 0 and 2 because
they represent combinations which are easy/intuitive to interpret and relate to other methods.
Non-integer values for the power, however, may lead to complex results (if the signals (i.e.,
Elementi) are negative).

A factor zero would neglect the shift, a factor one would ensure a zero to peak signal distribution,
and a factor infinity (very large factors) would asymptotically approach a centroid calculation.
An exponent (power) zero would correspond to a centroid calculation, a power of one would
provide linear weightings, and a power of 2 would base on quadratic weightings.

In general, using a factor of 1 and a power of 1 will result in lower weights for elements that
are closer to the extreme value, and higher weights for elements for that are farther from the
extreme value. This can result in moderate variability in the weights. As reported in Table 4 the
decentration for case 5 is stable at around 400 µm.

The method has been tested on a pilot cohort of clinical data and has been found to be effective.
The different metrics provide complementary information about the geometry and optics of the
lenticule. The X, Y plot of a specific metric for both treatments shows enantiomorphism [18,19]
(mirror symmetry).

The (X, Y) given by different metrics are different but not very dissimilar. Actually, those
(X, Y) coordinates closely match for obviously decentered cases (e.g., Case 5 OS). Figure 2
demonstrates differences in the decentration determined by several metrics. For OD, the Y
component of the decentration given by different metrics ranges from about +20 µm (EA) to
-290 µm (RFPA), whereas for OS, it ranges from -60 µm (EA) to -730 µm (RFPA). If we exclude
EA from the Figure, the other 5 metrics agree within 100 µm standard deviation for X and Y for
both OD and OS.

The primary aim of this work is neither determining the optimum centration reference for
clinical use, nor finding the most adequate metric to evaluate centration. Rather, the aim of the
work is to present a simple yet novel method to assess centration in an objective way without any
subjective or manual step. When a new method is presented, it is usually needed to prove that
the results given by the method are reliable, or they agree with the experimental results. The
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best way is to provide experimental results to show which metric gives the best estimation of
the centration. Explaining why in some cases, there are large differences in the (X,Y) given by
different methods may point out which metric should be used to evaluate the centration and why.

The discussion on different metrics to evaluate centration has been subject to debate in clinical
papers, as it can be seen in the references. In particular, Chung et al. [7] and Roberts [20] have
provided discussion on the topic.

Which of the provided metrics is more reliable may depend on several factors. On the one
hand, one can check at the perturbation analysis which metric is more robust (i.e., less prone to
be affected by noise) and take this as the best representing the unbiased centration (i.e., TAA). On
the other hand, one can split the presented metrics into 2 general groups: metrics representing
length data (CT and EA) and metrics representing curvature/power data (the rest) (actually one
could further split this into curvature vs power data, although both are typically presented in
dioptres). With this split, one could say that for evaluating the centration of the lenticule as “a
volume of tissue” metrics representing length data seem more adequate (and of those take the
one with the lowest perturbation, i.e., CT), whereas for evaluating the refractive effect of the
correction metrics representing curvature/power data seem more adequate (and of those take the
one with the lowest perturbation, i.e. TAA).

It is difficult to discuss the accuracy of the centration partly due to the lack of an absolute
optimum centration reference. Concerning the optimum centration reference, previous work
has discussed and presented the currently available different approaches [4]. Concerning the
question regarding the accuracy of the method, this can be determined using idealised synthetic
files (instead of pre- and postoperative data of real treatments). By doing this (unpublished data),
the model properly retrieves the virtually applied decentration. Another limitation of the true
performance of the model is the actual resolution of the diagnostic data (200 µm radially in our
case).

Comparing both panels of Fig. 3 also suggests differences between the decentration determined
using either CT or REP. Analyzing those differences reveals centred differences with a close to
zero average and ∼150 µm µm standard deviation for X and Y, with 75% of the cases showing
differences within 200 µm for X and Y. Furthermore, there is a statistically significant correlation
(p< .0001) between the decentration determined using CT and REP for both X and Y components
of the determined decentration, suggesting that the determined decentrations correspond to a true
shift of the centre of “mass” of the dataset of the differences.

Histograms showing the distribution of decentrations have been generated based on different
optical metrics [21–26]. The method has been compared to other methods for determining
centration/decentration of corneal corrections, most of which require operator input or subjective
judgement [7,21,22]. The evaluation of our pilot cohort (101 cases) shows that decentration
remains within 200 µm in 30% of the cases for CT and 63% of the cases and REP (Fig. 4(c)).

A formal reproducibility analysis has been performed based on the perturbation analysis. We
believe that the uncertainties in the method determined by the perturbation analysis properly
represent the reproducibility when using multiple pre-op and multiple post-op measurements.
Adding noise to the dataset means introducing random variation or uncertainties to the location
of the centre of “mass”. This can be done, for a variety of reasons, such as to simulate real-world
conditions or to test the robustness of the lenticule decentration. This can help to identify potential
weaknesses and make necessary adjustments. In general, a perturbation analysis involves making
small changes to a system and observing the effects on that system. This can be used to assess the
accuracy and robustness of a method. The perturbation analysis involves comparing the average
centre of “mass” with and without small changes, or perturbation, to the system. The difference
between the two represents the accuracy of the method as reported in Table 6, and the standard
deviation of the perturbed centre of “mass” represents its robustness [11,12].
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One could perform the perturbation analysis based on a real series of different measurements
of the cornea (pre and post) instead of based on a white-noise approach, yet this would add other
sources of confounding factors beyond the robustness of the method itself. Alternatively, one
could perform the perturbation analysis merely based on the perturbation of the elevation data
and take these then to formally calculate all the other metrics. The selected approach is simpler
than that one, since it does not involve any reconstruction, but it is equivalent since the noise
amplitudes have been selected based on realistic modelling. Finally, the selected approach in
which every metric is perturbed “on its own” and in a sense independently, may provide a larger
coverage of the perturbation applied to these 101 cases.

Total standard deviation and total standard error are measures of the variability or dispersion
of a set of data. A lower total standard deviation and total standard error indicate that the dataset
is more reproducible, which indicates that the method is more reliable. Additionally, it makes it
easier to detect small but significant differences. Except for EA with a total standard deviation of
less than 17 µm, all the other metrics have excellent precision and robustness of ∼5 µm overall
(Table 7).

Adding 10 µm noise to EA data causes that the (z) value of the pre- to postoperative difference
for each element (pixel) changes within± 14 µm. The actual effect caused by the noise is more
important (more detrimental) in the centre of EA (for which the sagittal elevation z values for
neighbour elements are close to each other, with radial slopes <0.05 (50 µm/mm), approx. ∼1
mm diameter centrally) and reduced in the periphery (for which the sagittal elevation z values for
neighbour elements are farther apart, becoming negligible approx. from 8 mm diameter to the
outside).

The results indicate that preoperative pupil offset does not affect the metrics, and that there is
no relevant change in pupil offset from pre- to postoperative measurements. Additionally, the
maximum deviation of differences in pupil centre and limbus centre positions was found to be less
than 200 µm (within the radial resolution of the data matrices). The reference point that could be
derived from a Placido-Scheimpflug measurement, such as the corneal intersection of the visual
axis, is actually subject to be dependent on the optics and geometry of the cornea. So, comparing
pre- and post-operative data might be biased by a change of the visual axis that occurred through
the optical correction itself. Since both, pupil and limbus centres, did not change location (respect
to the centre of the map, the corneal vertex normal) from pre- to postoperative measurements, we
can infer that the centre of the map, i.e., the corneal vertex normal, remained largely unchanged
by the treatment.

Since the centre of “mass” X coordinate correlated with the difference in the X coordinate
of the limbus centre (respect to the corneal vertex normal) for 2 of the metrics (CT and TAA,
p< .0001 for both), we repeated the analyses considering the decentration respect to the position
of the preoperative corneal vertex normal (i.e., accounting for the shifts in limbus centre respect
to the corneal vertex normal). While the numbers vary, the distribution of the decentration
remained the same. This is shown in Fig. 6.

From Tables 6 and 7 combining the accuracy and the variance of the perturbation analysis, it
can be inferred that this method would be reproducible (95% limits of agreement) to at least 53
µm (CT), 148 µm (EA, see the discussion above), 38 µm (REP), 44 µm (RFPA), 36 µm (SA),
and 16 µm (TAA). All of these but EA are below the relevant tolerance of 70 µm to achieve the
diffraction limit in 95% of the normal eyes with a 7.0 mm pupil, and EA is well within the 200
µm tolerance to reach the same goal with a 3.0 mm pupil [6].

The intention of clipping is to determine the center of “mass” based only on the subset of
the matrix that fulfills a certain radius criterion. This means that the center of “mass” will
be calculated using only the elements of the matrix that are within a certain distance of some
reference point, in our case the corneal vertex normal (Table 3), and any elements that are outside
of this distance are ignored. One reason to do this is to ensure that the center of “mass” is
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Fig. 6. Frequency of decentration respect to the position of the preoperative corneal vertex
normal (i.e., accounting for the shifts in limbus centre respect to the corneal vertex normal).
Distribution of X/Y for a) corneal thickness. b) corneal refractive equivalent power. c)
distribution of R for corneal thickness and corneal refractive equivalent power.

calculated using a consistent set of points, rather than being influenced by extreme, outlying, or
missing values. By clipping the matrix and only considering a subset of its elements, values that
might skew the result are ignored and provide a better estimate of the center of “mass”. This
information can be useful for improving the accuracy and robustness of the dataset and method
and enables the detection of inconsistent diagnostic data.

A strong clipping criterion, in which a very small subset of the matrix is used to calculate
the center of “mass”, could falsely reduce the estimated decentration. This is because the
clipping process effectively ignores large portions of the matrix, which could include important
information about the distribution of the data. As a result, the center of “mass” calculated using
a strongly clipped matrix may not accurately reflect the true distribution of the data and could
underestimate the decentration.

In general, it is important to carefully consider the clipping criterion used in any analysis. If
the criterion is too strong, it could lead to inaccurate or unreliable results, while if the criterion is
too weak, it may not effectively filter out extreme or outlying values. It is therefore important to
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strike a balance between using a sufficiently restrictive criterion to exclude unreliable data, while
still including enough data to accurately represent the true distribution of the data.

The centre of “mass” of Case 5 is stable for any of the suggested clipped diameters (<= 9
mm, >=5 mm) and corresponds to the missing data observable at Fig. 1, but also to the values
observed at Table 4 and Fig. 2. Differences in pupil centre and limbus centre positions before and
after surgery were used as a sanity check to ensure that the measurements are well aligned and do
not introduce confounding effects. Overall, the method provides a reliable and objective way
to determine the centration of a lenticule of tissue extracted from a cornea. Theoretically, the
same method can be easily used on pre- or post-surgery data to determine the most appropriate
centration for a spectacle-like correction (sphere, cylinder, and axis), proxy for the visual axis
[27].

The centre provided by the current method (based on pre to post surgery differences) represents
the effective centration of the applied correction; whereas comparing the centres determined
based on isolated pre- and post-surgery data represents a potential shift of the visual axis induced
by the surgery [27].

5. Conclusions

A new method has been developed for analyzing the centration of a lenticule of tissue extracted
from the cornea. This simple method has been evaluated in a small cohort, providing an objective
and less error-prone approach to lenticule centration analysis.

This method is non-invasive, operator-independent, and generic, making it a valuable tool
in ophthalmic surgery and research. It enables reliable and accurate measurement of corneal
refractive surgery procedures and can be applied to any topo- or tomographic derived metric.

The evaluation of this new approach has demonstrated its validity and the accuracy of the
centration values. Overall, the method could be helpful to support further improvements in
corneal laser surgery and would allow surgeons to assess the quality of their outcomes as well as
to assess different products in the market regarding their reliability in centration.
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